D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

Part B: OSEK Objects and Attributes

OSEK/VDX

OSEK Run Time Interface (ORTI)

Part B: OSEK Objects and Attributes

Version 2.2

25. November 2005

This document is an official release and replaces all previously distributed documents. The OSEK group retains the
right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

ORTI 2.2 Part B © by OSEK Document: ORTI-B-22.doc

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

: Part A: Language Specification Part B:
OSEK Objects and Attributesfr

Preface

OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for
an open-ended architecture for distributed control units in vehicles.

For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary".

Regarding implementation and system generation aspects please refer to the "OSEK
Implementation Language" (OIL) specification.

OSEK ORTI Part B: OSEK Objects and Attributes© by OSEK 2

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

Table of Contents

I OVEIVIEW ..ottt e e e et e e e et e e e eeaaa e e e e eeaaeeeeeeaaseeeeenaaeeeeensaeeeeeennneeeean 5
I B 170) oL USSP PRPP 5
1.1.1 Generation of INfOrMAatiONcccuvvviviiiiiiiiiiiiiieeeee et e e e 5

2 Standard ORTI Objects and AtTIDULEScccuvieriieeiieiieeieeiie ettt 6
2.1 KEIME VETSION ...ttt e e e e e et e e e eenaeeeeeeeaaeeeeeentneeeeanns 6
R € 1553153 21 B 115 5110 111 IO RPN 6
221 ARIIDULE VALID ...ttt s et e e s e e 6
2.3 OBJECE OS ettt ettt e et e et e et eena e e teeenbeenbeeenbeenreas 7
2.3.1 Attribute RUNNINGTASKoooiioiiiiiiieeeeeee e 7
2.3.2 Attribute RUNNINGTASKPRIORITY ..oovviiiiiiiieieeeee e 7
2.3.3 Attribute RUNNINGISR2 ..ottt 7
2.3.4 Attribute SERVICETRACEcoooiiiiiieeeeeeee e 8
2.3.5 Attribute LASTERRORoooiiiieiiieeee e 8
2.3.6 Attribute CURRENTAPPMODEcoooiiiiiiiiieeeeeee e 8
2.4 ODJECE TASK ..ottt ettt ettt et e et esbeesaeesaesseenseeseenseessesseensenneans 8
2.4.1 Attribute PRIORITY ...ooveiiiiiiiiee e et 9
242 AHIIDULE STATEo 9
2.4.3 AUIIDULE STACK ..ot eeeaaeee s 9
2.4.4 Attribute CURRENTACTIVATIONS. ..ottt 9
2.4.5 Attribute CONTEXTooooiiiiiiiieeeeeeeeeeeee e e eeaaee e 9
2.5 ObJECt CONTEXT ...cootiiiiieiiieiieie ettt ettt ettt saeebaesabeesseeseaeensaessaeenseensnas 9
2.5.1 Attribute ADDRESS ..o 10
252 AUIIDULE SIZE ...ttt 10
2.6 ObBJECE STACK ..ottt ettt ettt e e e e teeenbeesbeeesbeeseesnseens 11
2.6.1 AHIIDULE SIZE.......oo oo 11
2.6.2 Attribute BASEADDRESSoiiioiiiiee e 11
2.6.3 Attribute STACKDIRECTIONc.oooiiiiiiiieeeeeeeeeeeeee e 11
2.6.4 Attribute FILLPATTERNoooiiiiiiiieee et 12
2.7 ObJECt ALARM ...cuiiiiiieiiiieeeeee ettt ettt ettt e e et be b e esbeesaeensaens 12
2.7.1 Attribute ALARMTIMEoooiiiiiiiiee e 12
2.7.2 Attribute CYCLETIME ..ot 12
2.7.3 AHIIDULE STATEo 12
2.7.4 AHribute ACTIONoviiiiiiiie e eaee e 13
2.7.5 Attribute COUNTERooooiiiiiieeeeeeee e 13
2.8 ODbject RESOURCEociiiiiiiiieieeestee ettt 13
2.8.1 AHIIDULE STATEo 13
2.8.2 Attribute LOCKERoooiiiiiiiiiieie e 13
2.8.3 Aribute PRIORITY ...ooeiiiiiiiieeeeeeeeeeee et 13
2.9 Object MESSAGECONTAINER.......ccecoiiiieiieieeeeetee e 14
2.9.1 Attribute MSGNAME ...t 14
2.9.2 Attribute MSGTYPE ...ooooeeeeeeee e 14
2.9.3 Attribute QUEUESIZEooooiiieeeee e 14
2.94 Attribute QUEUECOUNTuviiiiieeeee e e 14
2.9.5 Attribute FIRSTELEMENTccovviiiiiiieieee e 15

3 Vendor specific objects and attribUteSc.eeevieriieiiiiiiieeie et 16
4 SamPle ORTT FIlE....oiiiiiiieiieee ettt et et e e rae e s ebee e s sbeeesnsaeenes 17

ORTI 2.2 Part B © by OSEK 3

Eﬁﬂ OSEK/VDX OSEK Run Time Interface (ORTI)

Part B: OSEK Objects and Attributes

|
Appendix A Interpretation of SERVICETRACE..........ccoviiiiiiiiieieeeeeee e 22
A.1 Operation of SERVICTRACE.........ccoiiiiiieiee ettt see e 22
A.2 Debuggers' INterPIetationsccc.eerueeeriieriieetieeieeite sttt ee sttt sbeesaeeebeeseeeeneeas 22
AL2ZT OVEIVIEW ottt ettt ettt ettt sttt st sb et et esbeebesaeenaeennea 22
A.2.2 Simple INterpretation..........cceeeieerieeiieeiieeie et esee e e see e e ereesbeessseeseeenneas 23
A.2.3 Intelligent INterPretation.......cceeeeveeeriieeiiieeriee et e et e erre e e eesaee e ee e 23
HISTOTY ettt e et e ettt e st e et e e e it e e abe e e bt e e e eabeeeaaneeea 24

4 © by OSEK ORTI 2.2 Part B

-ﬂ OSEK/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

1 Overview

1.1 Scope

The OSEK Run Time Interface (ORTI) is intended as a universal interface for development
tools to the OSEK Operating System. The interface intends to enable the attached tool to
evaluate and display information about the operating system, its state, its performance, the
different task states, the different operating system objects etc.

1.1.1 Generation of Information

Information about the OSEK configuration and status availability can be made available at
generation of the configuration header files by the system generator. System generators are
provided with each OSEK implementation and connect configuration information to C header
files. They are capable of providing all necessary information including configuration
information and internal code and data addresses to the attached tool. The ORTI file is
typically generated at build time by the OSEK manufacturer’s System Generator, as shown in
figure 1.

The configuration information will remain static during the debug session (or until a new
software version is compiled) and serves as an information basis. Additionally the ORTI file
contains dynamic information as a set of attributes that are represented by formulas to access
corresponding dynamic values. Formulas for dynamic data access are comprised of constants,
operations, and symbolic names within the target file. The debug tool to obtain internal values
of the required OS objects can then evaluate the given formula.

oRT
Operating System Information:
delivers names and meaning
of 0S-Properties

ORTI
File

Target Symbol
Information

Compiler/ -
Linker N

Variable Info Regest

Task 2: Keyboard Entry running
Task 3: Wotor Control waiting

Task 4: Control preempted
Stack Uisage: 40%

Debugger
capable to understand

Variable Info ORTI - Files

Figure 1 - ORTI Aware Debugging System

ORTI 2.2 Part B © by OSEK 5

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2 Standard ORTI Objects and Attributes

ORTI is intended for the description of applications in any OSEK implementation. It
describes a set of attributes for system objects and a method for interpreting the data obtained.
The types defined in the section are specified to allow the debugger to determine the target
memory access method as well as the best way of displaying the retrieved data. In most cases
the information that the user will require to see is a textual description of an attribute rather
than the actual value read from the variable.

An example of this is as follows; when a user requests the current state of a task he will
expect to see something like RUNNING, WAITING, READY or SUSPENDED, instead of
the actual numeric value that is used by the OS to represent this information internally. For
this reason KOIL (see part A) has been introduced, which allows a kernel manufacturer to
describe how an internal OS value must be mapped to a descriptive value. This approach is
independent of OSEK as it allows any kernel manufacturer to specify a set of kernel objects
to be displayed by any debugger.

However, KOIL treats all object types the same. So, a debugger cannot assume any specific
properties of the objects displayed. For example, task objects are displayed similar to stack
objects and no specific debugging features belonging to these objects can be assumed. This is
“Part A” compliant debugging, which gives basic kernel awareness.

This document defines a set of recommended objects and attributes, and their semantics. Any
objects and attributes that use the names in this document must also have the semantics
defined.

2.1 Kernel version

The name of the semantics described in this document is “ORTI”. This document describes
the semantics version “2.2”.

All ORTI files using this specification with the version of this document must have the
following kernel version:

OSSEMANTICS = "ORTI", "2.2";

2.2 General attributes

2.2.1 Attribute VALID
Type : CTYPE

Every object declaration may contain a VALID attribute telling the debugger whether the
object's attributes are currently valid. It may have an integer type of any size. Its possible
values are 0 (invalid) and non zero (object is valid).

6 © by OSEK ORTI 2.2 Part B

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2.3 Object OS

The OS object represents an OSEK Operating System that runs on the target CPU. There can
only be one OS object in an ORTI file. For example:

0S sampleOS {
CURRENTAPPMODE = "osAppMode";

RUNNINGTASK = "osRunningTask";
SERVICETRACE = "osServiceTrace";
RUNNINGISR2 = "osRunningISR";

bi
The following attributes belong to the object OS:

2.3.1 Attribute RUNNINGTASK
Type: ENUM

This attribute specifies how to evaluate the task currently in state RUNNING within the OS
object.

RUNNINGTASK is set to NO_TASK while no task is in running state.
Example (part of OS object):

ENUM [
"NO_TASK" = 0,
"TaskA" : TaskA
"TaskB" : TaskB
] RUNNINGTASK;

]|
N

2.3.2 Attribute RUNNINGTASKPRIORITY
Type: ENUM or CTYPE

This attribute specifies how to evaluate the current priority of the task referred by
RUNNINGTASK. The current priority can be different from the static task priority as a result
of priority ceiling protocol. The priority displayed is the priority as defined in the OIL file.
2.3.3 Attribute RUNNINGISR2

Type: ENUM

This attribute specifies how to evaluate the category 2 ISR currently running within the OS
object.

RUNNINGISR?2 is set to NO_ISR while no category 2 ISR is running.
Example (part of OS object):

ENUM [

NO_ISR" = 0,
"ISRA" = 1,
"ISRB" = 2

] RUNNINGISR2;

ORTI 2.2 Part B © by OSEK 7

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2.3.4 Attribute SERVICETRACE
Type: ENUM

This attribute indicates the entry or exit of a service routine and the ID of this service routine.
The value of this attribute must be evaluated from one single memory location. This attribute
must be traceable (TOTRACE).

The least significant bit of this attribute indicates the entry (= 1) or exit (= 0) of a service
routine. All service IDs must be even ENUM values.

See Appendix A for a detailed description of SERVICETRACE.

2.3.5 Attribute LASTERROR
Type: ENUM

Attribute for the last error code detected not equal E OK. At startup the error code is
initialized with E_OK. It is never set back to E_OK after first error.

Example:

ENUM [
" E_OK n
"E_OS_ACCESS"
"E OS_CALLEVEL"

"E_OS_LIMIT"
"E_OS_NOFUNC"
"E OS_RESOURCE"

NS N SN SN S S SN~

"E 0S STATE"
"E_OS_VALUE"
] LASTERROR;

O Jo Ul WN B O

2.3.6 Attribute CURRENTAPPMODE
Type: ENUM
Attribute that describes the current application mode.
Example:
ENUM [
"OSDEFAULTAPPMODE"

"OSDIAGNOSTIC"
] CURRENTAPPMODE;

[Tl
-

2.4 Object TASK
A TASK object represents an OSEK task. For example:

TASK sampleTask {

PRIORITY = "taskPriority[1l]";
STATE = "taskA->state";
STACK = "STACK 1";

}i
The following attributes belong to the object TASK:

8 © by OSEK ORTI 2.2 Part B

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2.4.1 Attribute PRIORITY
Type: ENUM or CTYPE
This attribute represents the current priority of the TASK object. The current priority can be

different from the static task priority as a result of priority ceiling protocol. The priority
displayed is the priority as defined in the OIL file.

2.4.2 Attribute STATE

Type: ENUM

This attribute contains the current state of the TASK object. The possible states of a TASK
are as follows:

e SUSPENDED

e READY
e RUNNING
e WAITING

2.4.3 Attribute STACK
Type: ENUM

This attribute contains a reference to the stack object that the task is currently using.

2.4.4 Attribute CURRENTACTIVATIONS
Type: CTYPE

This attribute specifies the number of current activations for the task.

2.4.5 Attribute CONTEXT
Type: ENUM

This attribute contains a reference to the context object that the task is currently using.

2.5 Object CONTEXT

The CONTEXT object declaration describes a subset of the information saved by the
operating system for a particular task.

A CONTEXT is uniquely attached to a task.

The CPU_ prefix is reserved for attributes that describe processor specific information and
must not be used to describe any other information.

Register names must consist of the CPU_ prefix and the register name.

Example: CPU_X will be used for the X register.

ORTI 2.2 Part B © by OSEK 9

Eﬁﬂ OSEK/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2.5.1 Attribute ADDRESS
Type: CTYPE

This attribute represents the base address of a memory area containing a subset of the context.
The format and interpretation of that area is not part of this document.

The intent of this attribute is to provide access to context information, which may not be
provided by other attributes.

2.5.2 Attribute SIZE
Type: CTYPE

This attribute represents the size (in bytes) of the memory area described in 2.5.1.

Example of CONTEXT object:
IMPLEMENTATION myOSEK {

TASK {

ENUM [
"ContextA":ContextA = 0x2030, // Reference to "ContextA" CONTEXT Object
"ContextB":ContextB = 0x2100,
"ContextC":ContextC = 0x3000
] CONTEXT;
}
CONTEXT {
CTYPE VALID; /* 1if TRUE (!= 0), context is wvalid */
CTYPE ADDRESS;
CTYPE SIZE;
CTYPE CPU PC; /* value of program counter ‘PC’ */
CTYPE CPU SP; /* value of register ‘'SP’ */
CTYPE CPU RO; /* value of register ‘RO’ */
CTYPE CPU RI1; /* value of register ‘R1’ */

Definitions of the CONTEXT objects, which may be referenced by TASK objects

TASK TaskA {
CONTEXT = "&tcb[0]";
)z

CONTEXT ContextA

VALID = "taskA->state != RUNNING";
ADDRESS = "&tcb[0]";
SIZE = "0x20";
~_CPU_PC = "taskA->stack->PC";
~CPU _SP = "taskA->stack";
_CPU RO = "taskA->stack->R0O";

= "taskA->stack->R1";

“CPU R1

)

10 © by OSEK ORTI 2.2 Part B

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

CONTEXT ContextB {

VALID = "taskB->state != RUNNING";
ADDRESS = "&tcb[1]";

SIZE = "O0x20";

_CPU PC = "taskB->stack->PC";

~CPU _SP = "taskB->stack";

_CPU_RO = "taskB->stack->RO";

_ = "taskB->stack->R1";

2.6 Object STACK

The STACK object defines the memory area of any stack in the system. For example, if three
tasks are present each with an individual stack space, then three STACK objects will be
present in the ORTI file. For example:

STACK sampleStack {

SIZE = "0x200";
BASEADDRESS = "stack[1]";
STACKDIRECTION = "UP";
FILLPATTERN = "OxAA55";

bi
The STACK object can have the following attributes:

2.6.1 Attribute SIZE
Type: CTYPE

This attribute represents the size (in bytes) of a memory area allocated for stack.

2.6.2 Attribute BASEADDRESS

Type: CTYPE

This attribute specifies the lowest address of stack memory area, regardless of the stack
direction.

2.6.3 Attribute STACKDIRECTION

Type: STRING

This attribute specifies the direction of stack growth and may have either “UP” or “DOWN”
as its value. UP means growing from lower to higher addresses. DOWN means growing from
higher addresses to lower addresses.

ORTI 2.2 Part B © by OSEK 11

l

ml OSEK/VDX

OSEK Run Time Interface (ORTI)
Part B: OSEK Objects and Attributes

Example:
Address range Direction Attribute name Attribute value
Ox2ff SIZE 0x200
ﬁ BASEADDRESS 0x100
0x100 STACKDIRECTION “Up”
Ox2ff SIZE 0x200
@ BASEADDRESS 0x100
0x100 STACKDIRECTION “DOWN?”

2.6.4 Attribute FILLPATTERN

Type: CTYPE

If the operating system fills the stack during initialisation, this attribute specifies with which
pattern the stack area is initialised. This allows the debugger to evaluate the maximum stack

usage.

For STACKDIRECTION DOWN the pattern starts at BASEADDRESS. For
STACKDIRECTION UP the pattern starts at BASEADDRESS+SIZE. If no pattern is used,

this attribute must be omitted.

2.7 Object ALARM

An ALARM object represents an OSEK alarm.

The following attributes belong to the object Alarm:

2.7.1 Attribute ALARMTIME
Type: CTYPE

This attribute specifies how to evaluate the time until the alarm expires next.

2.7.2 Attribute CYCLETIME
Type: CTYPE

This attribute specifies how to evaluate the cycle time for cyclic alarms. The value of

CYCLETIME is 0 for non-cyclic alarms.

2.7.3 Attribute STATE
Type: ENUM

This attribute specifies if an Alarm is RUNNING or STOPPED.

12

© by OSEK

ORTI 2.2 Part B

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

Example:

ENUM [
"STOPPED" 0,
"RUNNING" 1

] STATE, "Alarm State";

2.7.4 Attribute ACTION

Type: STRING

This attribute provides a string with a description of the action when the alarm expires, e.g.
“ActivateTask TaskA™.

2.7.5 Attribute COUNTER
Type: STRING

This attribute provides a string containing the name of the counter used by this alarm.

2.8 Object RESOURCE
A RESOURCE object represents an OSEK resource.

The RESOURCE object can have the following attributes:

2.8.1 Attribute STATE
Type: ENUM
This attribute represents the state of a resource (LOCKED/UNLOCKED).
Example:
ENUM [
"UNLOCKED" = 0,

"LOCKED" =1
] STATE, "Resource State";

2.8.2 Attribute LOCKER
Type: ENUM
This attribute indicates the name of the locking TASK/ISR.

2.8.3 Attribute PRIORITY
Type: STRING

This attribute has two components that state: that the RESOURCE is used by TASKs only or
by TASKSs and ISRs, and the priority that will be used when locking the RESOURCE.

ORTI 2.2 Part B © by OSEK 13

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

Example 1:

In the case where a RESOURCE is used by two TASKS at priorities 3 and 5 the result might
be:
RESOURCE resl {

PRIORITY = "TASK: 5";
}

Example 2:

In the case where a RESOURCE is used by at least one ISR at priority 2 and one TASK at
priority 5 the result might be:
RESOURCE res2 {

PRIORITY = "ISR: 2";
}

Example 3:
In the case where a RESOURCE is used by two ISRs at priorities 2 and 4 the result might be:

RESOURCE res3 {
PRIORITY = "ISR: 4";
}

2.9 Object MESSAGECONTAINER

Each existing combination of Messages and ACCESSORRECEIVED is described with an
own MESSAGECONTAINER object.

The following attributes belong to the object MESSAGECONTAINER:

2.9.1 Attribute MSGNAME
Type: STRING
Name of the message as defined in OIL file.

2.9.2 Attribute MSGTYPE
Type: STRING
Type of the message: “QUEUED” or “UNQUEUED”.

2.9.3 Attribute QUEUESIZE
Type: CTYPE

Size of the queue for queued messages. One for unqueued messages.

2.9.4 Attribute QUEUECOUNT
Type: CTYPE

Number of valid messages in the queue. One for unqueued messages.

14 © by OSEK ORTI 2.2 Part B

D-ﬂ OSEK/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

2.9.5 Attribute FIRSTELEMENT
Type: CTYPE

Formula for evaluation of address of first valid message. This message will be received next.

If no message is in the queue the value is zero.

Example:
MESSAGECONTAINER {
STRING MSGNAME ; /* message name (name in OIL file) */
STRING MSGTYPE; /* "QUEUED" or "UNQUEUED" */
CTYPE "unsigned char" QUEUESIZE; /* queue size (undefined for unqueued msg.) */
CTYPE "unsigned char" QUEUECOUNT; /* number of valid entries */
CTYPE "cdatatype*" FIRSTELEMENT; /* formula for evaluation of first elem. */
} , "MESSAGE";
MESSAGECONTAINER MessageA RxTaskC
{
MSGNAME = "MessageA";
MSGTYPE = "QUEUED";
QUEUESIZE = "5";
QUEUECOUNT = "msg a.count";
FIRSTELEMENT = "&(msg_a.data[msg a.rd idx])";
}
ORTI 2.2 Part B © by OSEK 15

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

3 Vendor specific objects and attributes

ORTT allows the definition of vendor specific objects and attributes. To avoid name conflicts
with new versions of the ORTI specification, vendors must use the prefix vs_ for vendor

specific names.

16 © by OSEK ORTI 2.2 Part B

l

D-ﬂ OSEK/VDX OSEK Run Time Interface (ORTI)

Part B: OSEK Objects and Attributes

4 Sample ORTI File

/***********************/

/* Declaration Section */
/***********************/

VERSION ({
KOIL = "2.2";
OSSEMANTICS = "ORTI", "2.2";
}i
IMPLEMENTATION VendorX_ORTI {
0Ss {
ENUM [
"basicTaskFirst" = "&(gTaskControlBlocks[0])",
"extendedTaskFirst" = "&(gTaskControlBlocks[1])",
"extendedTaskSecond" = "&(gTaskControlBlocks[2])"

] RUNNINGTASK, "Running Task Identification";

ENUM "unsigned char"

"51" = 0,
"s0" = 1,
"30" = 2,
"10" = 3

[

] RUNNINGTASKPRIORITY, "Priority of Running Task";

ENUM "unsigned char"

"NO_ISR" =0,
"Timer2Int" = 1,
"CanRxInt" = 2,
"CanTxInt" = 3

[

] RUNNINGISR2, "Running ISR of category 2";

TOTRACE ENUM "unsigned char" [

"ActivateTask"
"TerminateTask"
"ChainTask"
"Schedule"

/* ... %/
"Startos"
"ShutdownOS"

2,

’

Q0 O

14
14

52,
54

] SERVICETRACE, "OS Services Watch";

ENUM "unsigned char"
"E OK" =
"E OS_ACCESS" =
"E OS_CALLEVEL"
"E _OS_ID"
"E OS_LIMIT"
"E_OS_NOFUNC" =
"E OS_RESOURCE"
"E OS_STATE" =
"E OS VALUE" =

N N T e

[
0
1
2
3
4
5
6
7
8
E

] LASTERROR, "Last OSEK error";

ENUM "unsigned char"
"DEFAULT APPMODE"
"DIAGNIOSTIC MODE

[
=0,
=1

] CURRENTAPPMODE, "Current application mode";

}, "OS'I;
TASK {
ENUM "unsigned char"
w51 = O,
"5O" = l,
"I = 2,
"10" = 3

[

] PRIORITY , "Actual Prio";

ENUM "unsigned char"

[

ORTI 2.2 Part B

© by OSEK

17

=

=l

OSEK/VDX

OSEK Run Time Interface (ORTI)
Part B: OSEK Objects and Attributes

"READY"=0,
"RUNNING"=1,
"WAITING"=2,
"READY"=3,
"SUSPENDED"=4

] STATE, "Current State";

ENUM "unsigned short *" [

"StackQ" taskStack0 =

"Stackl" taskStackl =

"Stack2" taskStackz2 =
] STACK, "Task Stack";

CTYPE "unsigned char" REMAININGACTIVATIONS,

ENUM "unsigned short *" [

"Context 0" : Context 0 0,
"Context 1" : Context 1 =1,
"Context 2" Context 2 = 2

] CONTEXT, "Task Context™;

STRING vs Home Priority,
STRING vs Task Type, "Task Type";
STRING vs Schedule, "Schedule";

"& (taskStack0O[0])",
"& (taskStackl[0])",
"& (taskStack2[0])"

"Remaining task activations";

"Home Priority";

/* BASIC / EXTENDED */
/* non preemptive, full preemptive */

CTYPE "unsigned short" vs Event Mask, "Wait Mask";

CTYPE "unsigned short" vs Event Flags,
Activations";

STRING vs max Activations, "max.
}, "Tasks";
STACK {

CTYPE SIZE, "Stack Size (Byte)";

CTYPE "unsigned short *" BASEADDRESS,
"Stack Direction";

STRING STACKDIRECTION,

CTYPE "unsigned short" FILLPATTERN,

"Event Flags";

"Base Address";

"Stack Fill Pattern";

}, "Stacks";
ALARM {
CTYPE "unsigned long" ALARMTIME, "Alarm Time";
CTYPE "unsigned long" CYCLETIME, "Cycle Time";
ENUM [
"STOPPED" = 0,
"RUNNING" = 1
] STATE, "Alarm state";
STRING ACTION, "Action";
STRING COUNTER, "Counter";
}, "Alarms";
CONTEXT {
CTYPE "unsigned long" CPU RO, "CPU register RO";
CTYPE "unsigned long" CPU R1, "CPU register R1";
CTYPE "unsigned long" CPU R2, "CPU register R2";
CTYPE "unsigned long" CPU R3, "CPU register R3";
CTYPE "unsigned long" CPU PC, "CPU register PC";
CTYPE "unsigned long" CPU SR, "CPU register SR";
CTYPE "unsigned char" VALID;
}, "Task Context";
RESOURCE {
ENUM "unsigned char" [
"UNLOCKED" = 0,
"LOCKED" =1
] STATE, "Resource State";

ENUM "unsigned char" [
"Task basicTaskFirst" = 0,
"Task extendedTaskSecond" = 1,
"ISR Timer2Int" = 2
] LOCKER, "Resource Locker";
STRING PRIORITY,
"Resources";

by

"Ceiling priority";

18

© by OSEK

ORTI 2.2 Part B

D-T OSEK/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

MESSAGECONTAINER ({
STRING MSGNAME, "Message Name";
STRING MSGTYPE, "Message Type";
CTYPE QUEUESIZE, "Queue Size";
CTYPE QUEUECOUNT, "Entry Count";
CTYPE FIRSTELEMENT, "First Message";
}, "Message Container";

vs ISR {
STRING vs_ Priority, "Priority";
}, "ISRs";
}; /* END OF IMPLEMENTATION */

/***********************/

/* Information Section */
/***********************/

0S VendorX arch {
RUNNINGTASK = "gActiveTaskTcb";
RUNNINGTASKPRIORITY = "osRunTaskPrio";
RUNNINGISR2 = 0sORTIIsr2Id";
SERVICETRACE = "o0sORTIServiceId";
LASTERROR = "Last OSEK err";
CURRENTAPPMODE = "osAppMode";

}i

TASK basicTaskFirst {
PRIORITY = " (gTaskControlBlocks[0].actualPrio)";
STATE = " (gTaskControlBlocks[0].taskState)";
STACK = "&(taskStackO[0])";
REMAININGACTIVATIONS = " (gTaskControlBlocks[0O].actCount)";
CONTEXT = "0";
vs_Home Priority = "10";
vs Task Type = "BASIC";
vs_Schedule = "FULL Preemptive";
vs_Event Mask = "0";
vs_Event Flags = "O0";
vs_max Activations = "1";
}i

TASK extendedTaskFirst {

PRIORITY = " (gTaskControlBlocks[l].actualPrio)";
STATE = " (gTaskControlBlocks[1l].taskState)";

STACK = "&(taskStackl[0])";

REMAININGACTIVATIONS = " (gTaskControlBlocks[1l].actCount)";
CONTEXT = "1";

vs_Home Priority = "30";

vs Task Type = "EXTENDED";

vs_Schedule = "FULL Preemptive";

vs_Event Mask = " (gTaskControlBlocks[1l].eventMask)";
vs_Event Flags = " (gTaskControlBlocks[l].eventFlag)";
vs max Activations = "1";

}i

TASK extendedTaskSecond {

PRIORITY = " (gTaskControlBlocks[2].actualPrio)";
STATE = " (gTaskControlBlocks[2].taskState)";

STACK = "&(taskStack2[0])";

REMAININGACTIVATIONS = " (gTaskControlBlocks[2].actCount)";
CONTEXT = "2";

vs Home Priority = "50";

vs Task Type = "EXTENDED";

vs_Schedule = "FULL Preemptive";

vs Event Mask = " (gTaskControlBlocks[2].eventMask)";
vs_Event Flags = " (gTaskControlBlocks[2].eventFlag)";
vs_max Activations = "1";

ORTI 2.2 Part B © by OSEK 19

OSEK/VDX

=]

OSEK Run Time Interface (ORTI)
1 Part B: OSEK Objects and Attributes

STACK taskStack0 {

SIZE = "128";

STACKDIRECTION = "UP";
BASEADDRESS = "& (taskStack0[0])";
FILLPATTERN = "OxAA55";

)z
STACK taskStackl {

SIZE = "128";

STACKDIRECTION = "UP";
BASEADDRESS = "&(taskStackl[0])";
FILLPATTERN = "OxAA55";

}i

STACK taskStack2 {

SIZE = "256";

STACKDIRECTION = "UP";
BASEADDRESS = "& (taskStack2([0])";
FILLPATTERN = "OxAA55";

}i

ALARM myFirstAlarm {

O",'

ALARMTIME = "gAlarm[0O].alarmTime";
CYCLETIME = "gAlarm[0].cycleTime";
STATE = " (gAlarm([0].alarmTime == 0) 2 O i";
ACTION = "ActivateTask basicTaskFirst";
COUNTER = "SystemTimer";

}i

RESOURCE resBasic {
STATE = " (gResource[0].resourceCounter != 0) ? 1
LOCKER = "gResource[0].owner";
PRIORITY = "TASK: 51";

}i

RESOURCE resTimerData {
STATE = " (gResource[l].resourceCounter != 0) ? 1
LOCKER = "gResource[l].owner";
PRIORITY = "ISR: 3";

}i

CONTEXT Contextio {
_CPU_RO = " ((unsigned long *) (gTaskControlBlocks[O0
_CPU_R1 = "((unsigned long *) (gTaskControlBlocks[0
_CPU R2 = " ((unsigned long *) (gTaskControlBlocks[O0
_CPU_R3 = "((unsigned long *) (gTaskControlBlocks[0

_CPU_PC = "((unsigned long *) (gTaskControlBlocks[O0

"CPU SR = " ((unsigned long *) (gTaskControlBlocks[0
VALID = "(gTaskControlBlocks[0] .taskState != 1) &&

(gTaskControlBlocks[0].taskState != 4)";
}i
CONTEXT Context_l {

CPU RO = " ((unsigned long *) (gTaskControlBlocks[1l].
_CPU_Rl = " ((unsigned long *) (gTaskControlBlocks[1l].
_CPU_R2 = "((unsigned long *) (gTaskControlBlocks[1].
_CPU R3 = " ((unsigned long *) (gTaskControlBlocks([1].
_CPU_PC = "((unsigned long *) (gTaskControlBlocks[1l].
_CPU SR = " ((unsigned long *) (gTaskControlBlocks[1l].
VALID = " (gTaskControlBlocks[l].taskState != 1) &&

(gTaskControlBlocks[1]
}i

.taskState != 4)";

20 © by OSEK

ORTI 2.2 Part B

=1

l

OSEK/VDX

OSEK Run Time Interface (ORTI)
Part B: OSEK Objects and Attributes

CONTEXT Context 2 {

CPU_RO

CPU Rl =

CPU R2
CPU_R3

CPU_PC =

CPU_SR

VALID =

}i

" (gTaskControlBlocks[2] .taskState
(gTaskControlBlocks[2].taskState

"(Tunsigned
" ((unsigned
" ((unsigned
(unsigned
(unsigned

" ((unsigned

"

(
(
"(
(

long
long
long
long
long
long

*) (gTaskControlBlocks[2
*) (gTaskControlBlocks|[2
*) (gTaskControlBlocks[2

*) (gTaskControlBlocks[2
*) (gTaskControlBlocks[2
= 1) &&

1

1

]
*) (gTaskControlBlocks[2].

1

1

= 4)";

MESSAGECONTAINER DrvTx Msg 0 3 {
MSGNAME
MSGTYPE = "QUEUED";
QUEUESIZE = "5";
QUEUECOUNT

FIRSTELEMENT =

}i

"DrvTx";

= "osQMsg[0] .msgCount";

"osQMsg[0] . rdPtr";

MESSAGECONTAINER DataA Msg 1 3 {
MSGNAME
MSGTYPE = "UNQUEUED";
QUEUESIZE = "1";
QUEUECOUNT = "1";

FIRSTELEMENT =

}i

"DataA";

"osUngMsg[0] .msgPtr";

MESSAGECONTAINER DataA Msg 1 4 {
MSGNAME
MSGTYPE
QUEUESIZE = "1";
QUEUECOUNT = "1";

FIRSTELEMENT =

}i

"DataA";
"UNQUEUED";

vs_ ISR Timer2Int ({

vs Priority =

}i

n3m.
’

vs ISR CanRxInt {

vs_Priority =

}i

"l",'

vs ISR CanTxInt {

vs_Priority =

}i

v|7v|;

"osUngMsg[0] .msgPtr";

ORTI 2.2 Part B

© by OSEK

21

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

Appendix A Interpretation of SERVICETRACE

These notes are a supplement to the ORTI specification version 2.2 and describe the intended
use by debuggers of the SERVICETRACE attribute. The ORTI specification states how
SERVICETRACE should be maintained by the embedded application as it runs. However, the
ORTT language does not allow complete interpretation of SERVICETRACE - the debugger
needs to remember additional state and adopt addition display mechanisms in order to use
SERVICETRACE properly. It is intended that this supplement provide enough information to
allow debugger implementers to provide as much information as is possible for this attribute.

A.1 Operation of SERVICTRACE

This short section describes how the application deals with SERVICERACE.
SERVICETRACE consists of two components: a service number and an entry/exit flag. All
service numbers are even, and the flag occupies the lowest bit. Upon an OS service being
entered the service number of and the flag are both set. Upon exit the service number is set
and flag is cleared.

If the OS is implemented in such a way that all OS services are atomic (i.e. once entered they
run to completion without pre-emption by interrupts etc.) then SERVICETRACE gives an
indication of the last OS service called and whether or not the OS is still in it. However, such
implementations are not likely to be usual. A typical OS service will consist of the following
steps.

set SERVICETRACE and entry flag
parameter validation

disable interrupts

perform required service

enable interrupts

set SERVICETRACE and exit flag

In such an implementation an interrupt can occur whilst in the service and after
SERVICETRACE has been set. The ISR may lead to another OS service being called, which
in turn updates, SERVICETRACE. When the ISR returns to the interrupted OS service the
value in SERVICETRACE indicates that the inner nested service was just left rather than still
being in the initial service. This is because SERVICETRACE stores state changes rather than
state.

The diagram below illustrates this situation. Boxes that contain underlined text represent
changes to SERVICETRACE.

A.2 Debuggers' Interpretations

A.2.1 Overview
This section describes two possible interpretations of SERVICETRACE.

22 © by OSEK ORTI 2.2 Part B

D-ﬂ O SE K/VDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

A.2.2 Simple Interpretation

The simple interpretation just involves displaying the last value of SERVICETRACE without
further interpretation. In case of task switches and ISRs the value doesn’t give any useful
information.

A.2.3 Intelligent Interpretation
Tracing the value of SERVICETRACE by a debugger allows a more intelligent interpretation.

SERVICETRACE has its TOTRACE attribute set. This means that a debugger potentially can
trace each modification to it and therefore maintain a stack of values written. By pushing a
new value onto the stack when SERVICETRACE is written with the entry flag set, and
popping the top of the stack when a write takes place with the entry flag clear, the top of the
stack will always indicate the service. However, again in case of task switches and ISRs the
interpretation may be misleading. The following figure gives an example:

time ———»

Service B
ISR /
Service A
B, enter
TASK ——
B, exit .
A, enter A, exit
interrupt ISR returns
occurs

real behaviour

interpretation of debugger

The solid line gives the real behaviour of the system and the dotted line shows the
interpretation the debugger is able to display.

Debuggers with finite trace buffers can use them to track SERVICETRACE. In such
circumstances the finite buffer size may mean that earlier modifications to SERVICETRACE
are lost and therefore only a limited history may be provided.

ORTI 2.2 Part B © by OSEK 23

Eﬁﬂ OSEIQVDX OSEK Run Time Interface (ORTI)

1 Part B: OSEK Objects and Attributes

History

Version Date Remarks

1.0-2.0 Not published by OSEK/VDX
2.1 17. April 2002 Authors:

Mr. Barthelmann (3SOFT)

Mr. Biichner (Hitex)

Mr. Dienstbeck (Lauterbach)
Mr. Elies (Hitex)

Mr. Fathi (Cosmic)

Mr. Hoogenboom (Green Hills)
Mr. Janz (Vector)

Mr. Kriesten IIIT, (University of Karlsruhe)
Mr. Morgan (LiveDevices)

Mrs. Nieser (Lauterbach)

Mr. Nishikawa (Toyota, Europe)
Mr. Schimpf (ETAS)

Mr. Stehle (Vector)

Mr. Ulcakar (iSystem)

Mr. Vetterli (Metrowerks)

Mr. Wertenauer (Cosmic)

Mr. Winters (Motorola)

2.2 25. November 2005 Clarified register naming for CONTEXT.
Removed register name appendices.

24 © by OSEK ORTI 2.2 Part B

	1 Overview
	1.1 Scope
	1.1.1 Generation of Information

	2 Standard ORTI Objects and Attributes
	2.1 Kernel version
	2.2 General attributes
	2.2.1 Attribute VALID

	2.3 Object OS
	2.3.1 Attribute RUNNINGTASK
	2.3.2 Attribute RUNNINGTASKPRIORITY
	2.3.3 Attribute RUNNINGISR2
	2.3.4 Attribute SERVICETRACE
	2.3.5 Attribute LASTERROR
	2.3.6 Attribute CURRENTAPPMODE

	2.4 Object TASK
	2.4.1 Attribute PRIORITY
	2.4.2 Attribute STATE
	2.4.3 Attribute STACK
	2.4.4 Attribute CURRENTACTIVATIONS
	2.4.5 Attribute CONTEXT

	2.5 Object CONTEXT
	2.5.1 Attribute ADDRESS
	2.5.2 Attribute SIZE

	2.6 Object STACK
	2.6.1 Attribute SIZE
	2.6.2 Attribute BASEADDRESS
	2.6.3 Attribute STACKDIRECTION
	2.6.4 Attribute FILLPATTERN

	2.7 Object ALARM
	2.7.1 Attribute ALARMTIME
	2.7.2 Attribute CYCLETIME
	2.7.3 Attribute STATE
	2.7.4 Attribute ACTION
	2.7.5 Attribute COUNTER

	2.8 Object RESOURCE
	2.8.1 Attribute STATE
	2.8.2 Attribute LOCKER
	2.8.3 Attribute PRIORITY

	2.9 Object MESSAGECONTAINER
	2.9.1 Attribute MSGNAME
	2.9.2 Attribute MSGTYPE
	2.9.3 Attribute QUEUESIZE
	2.9.4 Attribute QUEUECOUNT
	2.9.5 Attribute FIRSTELEMENT

	3 Vendor specific objects and attributes
	4 Sample ORTI File
	Appendix A Interpretation of SERVICETRACE
	A.1 Operation of SERVICTRACE
	A.2 Debuggers' Interpretations
	A.2.1 Overview
	A.2.2 Simple Interpretation
	A.2.3 Intelligent Interpretation

	History

